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Abstract: This paper presents local search 

algorithms for finding approximation solutions of the 

multicriteria scheduling problems within the single 

machine context, where the first problem is the sum 

of maximum tardiness and maximum late work and 

the second problem is the sum of total late work and  

maximum late work. 

         Late work criterion estimates the quality of a 

schedule based on durations of late parts of jobs. 

Local search algorithms (descent method (DM), 

simulated annealing (SA) and genetic algorithm 

(GA))are implemented. Based on results of 

computational experiments, conclusions are 
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formulated on the efficiency of the local search 

algorithms. 

Keywords: Local search, genetic algorithm, late work criterion, 

multicriteria     scheduling. 

 

1.Introduction 

The scheduling problem is defined as a problem of assigning a 

set of jobs to a set of machines in time under given constraints 

([1],[2],[3]). In single machine case, jobs j ( j=1,2,…,n ) are mainly 

characterized by processing times ( pj ), due dates ( dj ), define 

expected completion times ( Cj =∑  
 
   i ) for particular schedule of 

jobs. The quality of an assignment, i.e. a schedule, can be evaluated 

from different points of view, which are represented by different 

performance measures. Most objective functions based on due dates 

are regular ones, i.e. non-decreasing with increase in completion 

times of jobs. This group includes criteria based on lateness ( Lj = 

Cj - dj), tardiness ( Tj= max{0,Cj- dj} ) or the number of tardy jobs ( 

Uj = 1, if Cj> dj, otherwise Uj = 0 ). The criteria based on earliness ( 

Ej = max{0,dj - Cj } ) are non-regular ones. 

Late work combines the features of two parameters: tardiness 

and the number of tardy jobs. Formally speaking, in the non-

preemptive case the late work parameter for job j in a given 

schedule is defined as 

Vj = min{max{0,Cj - dj }, pj} = min{Tj , pj} or, in a more extensive 

way, as: 

              0             if  Cj ≤ dj 

Vj =       Cj - dj      if  dj< Cj< dj + pj       , j = 1,2,…,n.  

              pj            if  Cj ≥ dj + pj 
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The parameter Vj was first introduced by Blazewicz [4], who 

called it  "information loss", referring to a possible application of 

the performance measures based on it. The phrase "late work" was 

proposed by Potts and Van Wassenhove [5]. Some researchers, e.g. 

Hochbaum and Shamir [6], use a descriptive name for this schedule 

parameter-the number of tardy job units. 

The relation between late work and other performance 

measures was established by Blazewicz et al. [7]. Interesting 

applications of the late work criteria arise in agriculture, where 

performance measures based on due-dates are especially useful [8]. 

Late work criteria can be applied in any situation where a 

perishable commodity is involved [5]. Leung [9] pointed out 

another application of late work scheduling in computerized control 

systems, where data are collected and processed periodically. 

The organization of this paper is as follows. Section 2 

presents the problems formulation. Section 3 provides local search 

algorithms incorporating a solution representation of a scheduling 

problem. Section 4 summarizes results of computational 

experiments and it is followed by conclusions in section 5. 

2.Problems formulation 

A set of n independent jobs N = {1,2,…,n} are available for 

processing at time zero, job j ( j=1,2,…,n ) is to be processed 

without interruption on a single machine that can be handle only 

one job at a time, requires processing time pj and due date dj. For a 

given schedule σ of the jobs, completion time Cσ(j) = ∑  
 
   σ(i) , 

maximum late work Vmax(σ) = max{Vσ(1) , Vσ(2) , … , Vσ(n)} can be 

computed where: 

                 0                    if  Cσ(j) ≤ dσ(j) 

Vσ(j) =      Cσ(j) - dσ(j)      if  dσ(j)< Cσ(j)< dσ(j) + pσ(j) 

                 pσ(j)                if  Cσ(j) ≥ dσ(j) + pσ(j) 
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and maximum tardiness Tmax(σ) = max{Tσ(1) , Tσ(2) , … , Tσ(n)}, 

where: 

Tσ(j) = max{0,Cσ(j) - dσ(j)}. 

          The first problem of minimizing a linear function of 

maximum tardiness (Tmax) and maximum late work (Vmax) is 

denoted by 1// Tmax + Vmax and called it ( P1 ). Also this problem is 

a special case of the general 1// F( Tmax , Vmax ) problem. The 

problem ( P1 ) from the class of simultaneous minimization can be 

formulated as follows:  

  Z1 = Min{ Tmax(σ) + Vmax(σ) }  

        σ   S  

Subject to 

Tσ(j) ≥ Cσ(j) - dσ(j)                  j = 1,2,…,n                    

Tσ(j) ≥ 0                                j = 1,2,…,n                           ------- ( P1 )                                                      

Vσ(j) ≤ Cσ(j) - dσ(j)                 j = 1,2,…,n 

Vσ(j) ≤ pσ(j)                           j = 1,2,…,n 

Vσ(j) ≥ 0                               j = 1,2,…,n 

 Where S denotes the set of all feasible schedules. 

       The aim in problem ( P1 ) is to find a processing order of the 

jobs on a single machine to minimize the sum of maximum 

tardiness and the maximum late work (i.e., 1// Tmax + Vmax). 

The second problem of minimizing a linear function of total 

late work ( ∑   
   j ) and maximum late work ( Vmax ) is denoted by 

1// ∑   
   j + Vmax and called it ( P2 ). Also this problem is a special 

case of the general 1// F(∑   
   j , Vmax) problem. The problem ( P2 ) 
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from the class of simultaneous minimization can be formulated as 

follows:  

  Z2 = Min{ ∑   
   σ(j) + Vmax(σ) }  

        σ   S  

Subject to 

               0             if  Cσ(j) ≤ dσ(j)                                               ---(P2)                

Vσ(j) =   Cσ(j) - dσ(j)  if  dσ(j)< Cσ(j)< dσ(j) + pσ(j)  , j = 1,2,…,n 

              pσ(j)               if  Cσ(j) ≥ dσ(j) + pσ(j) 

 

The aim in problem ( P2 ) is to find a processing order of the 

jobs on a single machine to minimize the sum of total late work and 

the maximum late work  (i.e.,  1// ∑   
   j + Vmax). 

 

3.Local search algorithms 

First application of local search to NP-hard problems stems 

from a time as early as the late 1950's and early 1960's [10]. Local 

search methods can find the approximation solution within a 

reasonable running time. Local search methods have the same 

feature: they explore the search space by iteratively moving from 

one feasible solution to another according to some defined rules. 

Many of these methods are inspired from nature and they explore 

neighborhood of feasible solution. Local search methods differ 

from each other in the problem representation they adopt, their 

definition of neighborhood on this representation and the strategy 

they employ while searching through this neighborhood. Some 

local search methods are inspired from evolution. This suggests the 

need for the following definition:  
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3.1 Solution Representation[11] 

Solution representation depends on the problem specification. In 

a scheduling problem of n jobs, a solution is represented by a 

permutation of the integers 1,2,…,n. 

Definition I [11]: An instance of a combinatorial optimization 

problem is a pair ( S , f ), where the solution set S is the set of all 

feasible solutions and the cost function f is a mapping f:S       R. 

The problem is to find a globally optimal (minimal) solution, i.e., 

an s*  S, such that f(s*) ≤ f(s) for all s   S.  

Definition II [12]: A neighborhood function N* is a mapping  

N*:S     P(S) which specifies for each s   S a subset N*(s) of S 

neighbors of s. 

Three typical neighborhoods exist for the permutation 

representation. They can be defined by applying certain moves to a 

sequence of jobs [13]: 

(1) Insert(shift): This neighborhood is obtained by removing a 

job from one position in  the sequence (1,2,3,4,5,6,7,8) and 

insert it at another position either before (left insert)   or after 

(right insert) the original position. For example the schedules 

(1,5,2,3,4,6,7,8) and (1,2,3,4,6,7,5,8) are both 

neighborhoods. 

(2) Swap(interchange): Swap two jobs that may not be adjacent. 

For example the schedule (1,6,3,4,5,2,7,8) is a neighbor. 

(3) Block insert: Insert a subsequence of jobs in a new position. 

For example the schedule (1,4,5,2,3,6,7,8) is a neighbor. 

Definition III [8]: Let ( S , f ) be an instance of a combinatorial 

optimization problem and let N* be a neighborhood function. A 

solution s*  S is called a local optimal (minimal) solution with 

respect to N* if f(s*) ≤ f(s) for all s   N*(s*). The neighborhood 

function N* is called exact if every local minimum with respect to 

N* is also a global minimum. 



 
Approximation Solutions for 

Multicriteria Scheduling… 

Adawiyah A. Mahmood, Dr.  Tariq 
S.Abdul-Razaq 

Issue No. 34/2014 

 

Journal of Al Rafidain University College                167           ISSN (1681 – 6870) 

 

Local search methods share the following features: 

(1) Initialization: An initial feasible solution s is generated 

randomly or by applying a heuristic method and declared as 

the current solution. The objective function value of the 

current solution is computed. 

(2) Neighborhood generation: A "move" is made through the 

solution space S from neighbor to neighbor to select a 

neighbor s' of s. 

(3) Acceptance test: Each local search method has its own 

acceptance test to decide whether s' replace s as the current 

solution. 

(4) Termination criteria: The algorithm is repeated until some 

termination criteria are satisfied. The output will be the best 

solution generated. 

 

3.2 Descent Method (DM) 

The descent method (DM) is a simple form of neighborhood 

search methods in which only improving moves are allowed. 

The resulting solution is a local optimum, not necessarily a 

global optimum. The structure of a descent algorithm is 

presented in figure (3.1). 

 

 

 

 

 

  

Figure (3.1) structure of a descent algorithm 

Step (1): Select an initial solution s   S; 

Step (2):Choose an element s' N*(s);∆=f(s')-f(s);if∆<0 

then    s = s', 

Step (3): If f(s') ≥ f(s),   s'   N*(s), then stop; else return to step (2). 
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3.3 Simulated Annealing (SA) Algorithm 

Simulated annealing (SA) has its origin in statistical physics, 

where the process of cooling solids slowly until they reach a low 

energy state is called annealing. It was originally proposed by 

Metropolis et al. [13] and was first applied to combinatorial 

optimization problems by Kirkpatrick et al. [14]. In such algorithm, 

the sequence of the objective function values does not necessarily 

monotonically decrease. Starting with an initial sequence s, a 

neighbor s' is generated (usually randomly) in a certain 

neighborhood. Then the difference   = f(s') - f(s), in the values of 

the objective function f is calculated. When   ≤ 0, sequence s' is 

accepted as the new starting solution for the next iteration. In the 

case of   > 0, sequence s' is accepted as new starting solution with 

probability exp(-  / T), where T is a parameter known as the 

temperature. Typically, in the initial stages, the temperature is 

rather high so that escaping from a local optimum in the first 

iterations is rather easy. After having generated a certain number of 

sequences, the temperature usually decreases. Often, this is done by 

a geometric cooling scheme which we will also apply. 

In this case the new temperature T
new 

is chosen such that        

T
new 

=   T
old

, where : 0 <   < 1 and T
old

 denote the old temperature. 

A possible stopping criterion would then be a cycle of a final 

temperature, which is sufficiently close to zero. Since we need to be 

unbiased we use for all heuristics a fixed given number (20,000 in 

this paper) of generated solutions as stopping criterion, we 

determine on the base of the initial temperature T = 10 as in [15]. 

3.4 Genetic Algorithm (GA)  

GA based on simplification of natural evolutionary process, 

genetic algorithms operate on a population of solutions rather than 

a single solution and employ heuristics such as selection, crossover 

and mutation to evolve better solutions. Each individual solution is 

represented by a string includes a set of random numbers called 

chromosomes. GA applies genetic operations on the individual 



 
Approximation Solutions for 

Multicriteria Scheduling… 

Adawiyah A. Mahmood, Dr.  Tariq 
S.Abdul-Razaq 

Issue No. 34/2014 

 

Journal of Al Rafidain University College                169           ISSN (1681 – 6870) 

 

chromosomes which are reproduced by exchanging genes utilizing 

crossover. An offspring inherit some characteristics from each of its 

parents. 

The general steps of GA are as follows:  

(1) Generate random numbers for initial population (individual 

chromosomes) (solutions). 

(2) Select two parents from a current population according to 

their fitness. 

(3) Apply crossover to them to produce new offspring. 

(4) Enter the new offspring to the population utilizing 

replacement strategy. 

(5) Apply mutation to the random selected chromosomes. 

(6) Enter the mutated chromosomes to the population using 

replacement strategy. 

(7) Terminate the algorithm after a fixed number of 

generations. 

Note that in scheduling problem, a chromosome includes genes 

that are a number of jobs that should be applied on one machine 

with permutation. In the following paragraph we describe each of 

the GA mechanisms. 

(1) Initial population  

          Initially many individual solutions (chromosomes) are 

generated randomly or produced with a good heuristic to form an 

initial population. 

(2) Parent selection  

          The selection strategy is a procedure to choose the 

individuals in the current population for creating offspring of 

subsequent generation. Two parent solutions (chromosomes) are 

selected from a current population according to their values, the 

better fitness, the bigger chance to be selected.  
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(3) The crossover operator  

The crossover operation is the most important operator in GA. 

We used two-point crossover (partially matched crossover) (PMX) 

on each pair of parent solutions to generate two new solutions. 

          Two-point crossover calls for two points to be selected on the 

parent organism strings. Everything between the two points is 

swapped between the parent organisms, rendering two child 

organisms. For example with crossover two point after the 4
th

 and 

7
th

 element: 

                    Parents            Exchanged                   Children   

Parent1  1234 567 8        1234  364  8            1257  364   8   Child1 

                                                                                 

Parent2   8521   364  7          8521  567   7    8321  567   4    Child2 

In other words, we made the swaps, 3        5, 6        6, 4       7 and 

then other elements remainder the same.  

(4) The mutation operator  

We randomly choose a chromosome and two of its genes ( jobs) 

as a candidate to be mutated.  

(5) Replacement strategy  

The elitist strategy is applied in this problem. In each generation 

we select the best chromosome as one of the chromosomes in the 

next population, in addition to the chromosomes (parents and 

offsprings) which are ranked after crossover and mutation 

according to their fitness values.  
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(6) Stopping condition  

GA is terminated if the best chromosome of the population 

doesn't change for 50 consecutive generations. 

4. Computational experiments   

This section views the computational results of local search 

algorithms (i.e., descent method (DM), simulated annealing (SA) 

and genetic algorithm (GA)) which introduced in section (3) for the 

problems (1//Tmax + Vmax ) and (1//∑   
   j +Vmax). Test problems are 

generated as follows: for each job j, an integer processing time pj is 

generated from the discrete uniform distribution [1,10]. Also, for 

each job j, an integer due date dj is generated from the discrete 

uniform distribution [P(1-TF-RDD/2),P(1-TF+RDD/2)], where P = 

∑   
   j, depending on the relative range of due date (RDD) and on 

the average tardiness factor (TF). For both parameters, the values 

0.2,0.4,0.6,0.8.1.0 are considered. For each selected value of n, two 

problems are generated for each of the five values of parameters 

producing 10 problems for each value of n, where the number of 

jobs n = 50,100,200. All local search algorithms in this paper 

(descent method (DM), simulated annealing (SA) and genetic 

algorithm (GA)) are tested by coding it in Matlab R2009b and 

running on a personal computer hp with Ram 2.50 GB. Each 

algorithm stops when it attends to a fixed number of iteration. The 

(DM) and (SA) stop after 20,000 iteration and (GA) stops after 100 

new generation of population.  

         For the problem (P1) tables (4.1) to (4.3) show the values of 

each local search algorithm and how many times each of them 

catches the best value. For the problem (P2) tables (4.4) to (4.6) 

show the values of each local search algorithm and how many times 

each of them catches the best value. Each table contains 10 

problems where:  

EX = the number of example. 
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DM = descent method performance. 

SA = simulated annealing performance. 

GA = genetic algorithm performance. 

Best = the best performance. 

No. best = number of examples that catch the best performance. 

Av. Time = the average of time in second. 

Table (4.1): The performance of local search algorithms for 

n=50. 

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 33 33 0.803423 33 0.485376 33 2.2149 

2 14 14 0.485881 14 0.476210 14 2.1998 

3 55 55 0.482367 59 0.478526 55 2.2146 

4 24 24 0.476799 24 0.480008 24 2.2085 

5 0 0 0.481222 0 0.488164 0 2.2074 

6 55 55 0.468660 56 0.492309 55 2.2515 

7 37 37 0.473350 38 0.482789 37 2.2172 

8 64 64 0.481144 69 0.478321 64 2.2074 

9 94 94 0.468486 94 0.486744 94 2.2218 

10 133 133 0.476539 133 0.495805 133 2.2011 

No. best 10 Av. Time 

0.5097871 

6 Av. Time 

0.4844252 

10 Av. Time 

2.21442 
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   Table (4.2): The performance of local search algorithms  

for n = 100. 

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 281 281 0.752799 281 0.618218 281 5.2176 

2 345 345 0.632327 345 0.620342 345 5.1908 

3 334 334 0.630096 334 0.642404 334 5.1451 

4 183 183 0.623157 183 0.756629 183 5.1197 

5 496 496 0.628466 496 0.702720 496 5.1533 

6 133 133 0.626593 133 0.636938 133 5.1359 

7 22 22 0.628908 22 0.633847 22 5.2142 

8 120 120 0.624681 120 0.643624 120 5.1146 

9 345 345 0.631848 345 0.636874 345 5.1641 

10 95 95 0.629514 95 0.640907 95 5.1668 

No. best 10 Av. Time 

0.6408389 

10 Av. Time 

0.6532503 

10 Av. Time 

5.16221 

Table (4.3): The performance of local search algorithms for n = 

200.   

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 319 319 0.920927 319 1.089923 319 16.4951 

2 138 138 0.963153 138 0.969849 138 16.2566 

3 830 830 0.934056 830 0.937151 830 15.5157 

4 30 31 0.936466 31 0.944838 30 15.4509 

5 0 0 0.936650 0 0.962992 0 15.3982 

6 357 357 0.950734 357 0.987751 357 15.5027 

7 352 352 0.936504 352 0.949816 352 15.5463 

8 146 146 0.940228 146 0.925345 146 15.3809 

9 57 57 0.929991 57 0.928336 57 14.7551 

10 233 233 0.929631 233 0.941485 233 15.4948 

No. best 9 Av. Time 

0.937834 

9 Av. Time 

0.9637486 

10 Av. Time 

15.57963 
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Results of the above tables show that the (GA) performs 

very well and then the (DM) gives reasonable results. The average 

computation time of (SA) is close to that of (DM) while for (GA) is 

large. 

Table (4.4): The performance of local search algorithms for n = 

50. 

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 38 56 0.621646 62 0.462542 38 1.9022 

2 14 18 0.465414 17 0.466724 14 1.8758 

3 61 80 0.448073 71 0.468660 61 1.8781 

4 24 35 0.462600 33 0.453508 24 1.9018 

5 0 0 0.455166 0 0.454749 0 1.8815 

6 62 74 0.451512 64 0.447186 62 1.9003 

7 41 41 0.490248 50 0.455103 44 1.8713 

8 65 72 0.447783 66 0.462686 65 1.8766 

9 94 104 0.450303 98 0.456187 94 1.8606 

10 133 136 0.446130 138 0.468994 133 1.8821 

No. best 2 Av. Time 

0.4738875 

1 Av. Time 

0.4596339 

10 Av. Time 

1.88303 
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 Table (4.5): The performance of local search algorithms for n = 

100. 

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 281 309 0.579330 289 0.697297 281 4.7017 

2 348 378 0.591284 358 0.608357 348 4.8789 

3 337 355 0.588728 347 0.597732 337 4.6866 

4 191 201 0.599128 197 0.601212 191 4.9383 

5 496 497 0.589819 496 0.600085 497 4.6737 

6 158 203 0.596384 180 0.602028 158 4.6113 

7 27 32 0.598575 42 0.605930 27 4.6847 

8 135 150 0.595046 160 0.599502 135 4.9194 

9 345 348 0.603438 360 0.592063 345 4.6762 

10 111 163 0.597757 140 0.620136 111 4.6745 

No. best 0 Av. Time 

0.5939489 

1 Av. Time 

0.6124342 

9 Av. Time 

4.74453 

Table (4.6): The performance of local search algorithms for n = 

200.   

EX Best DM Time for 

DM 

SA Time for 

SA 

GA Time for 

GA 

1 369 438 1.087852 424 0.897394 369 15.3706 

2 301 311 0.887854 343 0.888566 301 14.1156 

3 834 910 0.925646 876 0.892262 834 14.0318 

4 30 56 0.883290 66 0.890235 30 15.7047 

5 0 0 0.899873 7 0.857499 0 14.5430 

6 404 470 0.890592 453 0.888713 404 13.7467 

7 397 459 0.896993 453 0.895019 397 14.7598 

8 304 342 0.893320 355 0.913652 304 14.7038 

9 91 127 0.889341 136 0.896170 91 14.9116 

10 302 370 0.882687 371 0.900059 302 14.7030 

No. best 1 Av. Time 

0.9137448 

0 Av. Time 

0.8919569 

10 Av. Time 

14.65906 
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5.Conclusions 

In this paper local search algorithms (descent method (DM), 

simulated annealing (SA) and genetic algorithm (GA)) are 

proposed to find approximation solutions for the problems of 

minimizing Tmax + Vmax and ∑   
   j + Vmax. A computational 

experiment for the local search algorithms on a large set of test 

problems are given. The main result is that the genetic algorithm 

(GA) is more effective  for our problems. 

An interesting future research topic would involve 

experimentation with the approximation algorithms for large n and 

experimentation with the following multicriteria problems :  

(1) 1//Lex(Tmax , Vmax). 

(2) 1//F(Tmax , Vmax). 

(3) 1//Lex(∑   
   j , Vmax). 
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 المستخلص

 جذولح لوظائل ذقزيثيح حلول يجادلإ هحليح تحث خوارسهياخ يقذم الثحث هذا اى

 ذأخيز لأعظن الوجووع هي الأولى الوظألح حيث واحذج هاكٌح على الوقاييض هرعذدج

 عول لوحذاخ الوجووع هي الثاًيح والوظألح هرأخز عول لوحذاخ ذأخيز واعظن ةللاطا

 .هرأخز عول لوحذاخ ذأخيز واعظن كلي هرأخز

 للأجشاء سهٌيح فرزاخ على عروادلاتا الجذول كفاءج يخوي الورأخز العول هقياص        

 طزيقح،  الٌشول طزيقح وهي الوحليح الثحث خوارسهياخ اقرزحد . عواللأل الورأخزج

 صياغح ذن الحظاتيح الرجارب ًرائج على تالاعرواد . الجيٌيح والخوارسهيح  الوحاكاج ذقويح

 .الوحليح الثحث خوارسهياخ كفاءج حول اطرٌراجاخ

رئيسية: بحث محلي, خوارزمية جينية, مقياس عمل متأخر, جدولة متعددة الكلمات ال

 المقاييس.


