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Abstract: This paper presents local search
algorithms for finding approximation solutions of the
multicriteria scheduling problems within the single
machine context, where the first problem is the sum
of maximum tardiness and maximum late work and
the second problem is the sum of total late work and
maximum late work.

Late work criterion estimates the quality of a
schedule based on durations of late parts of jobs.
Local search algorithms (descent method (DM),
simulated annealing (SA) and genetic algorithm
(GA))are implemented. Based on results of

computational  experiments,  conclusions  are
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formulated on the efficiency of the local search
algorithms.

Keywords: Local search, genetic algorithm, late work criterion,
multicriteria  scheduling.

1.Introduction

The scheduling problem is defined as a problem of assigning a
set of jobs to a set of machines in time under given constraints
([11.[2].[3]). In single machine case, jobs j ( j=1,2,...,n ) are mainly
characterized by processing times ( p; ), due dates ( d; ), define
expected completion times ( C; :Z]i=1 pi ) for particular schedule of
jobs. The quality of an assignment, i.e. a schedule, can be evaluated
from different points of view, which are represented by different
performance measures. Most objective functions based on due dates
are regular ones, i.e. non-decreasing with increase in completion
times of jobs. This group includes criteria based on lateness ( L; =
C; - d;), tardiness ( T;= max{0,C;- d;} ) or the number of tardy jobs (
U; = 1, if Cj> d;, otherwise U; = 0). The criteria based on earliness (
E; = max{0,d; - C; } ) are non-regular ones.

Late work combines the features of two parameters: tardiness
and the number of tardy jobs. Formally speaking, in the non-
preemptive case the late work parameter for job j in a given
schedule is defined as

Vj=min{max{0,C; - d; }, p;} = min{T; , p;} or, in a more extensive
way, as:

0 if Cj<d,
Vj: Cj-dj if dj< Cj< dj+pj ,]=12,...n.

P it Cj=d;+p;
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The parameter V; was first introduced by Blazewicz [4], who
called it "information loss", referring to a possible application of
the performance measures based on it. The phrase "late work™ was
proposed by Potts and VVan Wassenhove [5]. Some researchers, e.g.
Hochbaum and Shamir [6], use a descriptive name for this schedule
parameter-the number of tardy job units.

The relation between late work and other performance
measures was established by Blazewicz et al. [7]. Interesting
applications of the late work criteria arise in agriculture, where
performance measures based on due-dates are especially useful [8].
Late work criteria can be applied in any situation where a
perishable commodity is involved [5]. Leung [9] pointed out
another application of late work scheduling in computerized control
systems, where data are collected and processed periodically.

The organization of this paper is as follows. Section 2
presents the problems formulation. Section 3 provides local search
algorithms incorporating a solution representation of a scheduling
problem. Section 4 summarizes results of computational
experiments and it is followed by conclusions in section 5.

2.Problems formulation

A set of n independent jobs N = {1,2,...,n} are available for
processing at time zero, job j ( j=1,2,...,n ) is to be processed
without interruption on a single machine that can be handle only
one job at a time, requires processing time p; and due date d;. For a

given schedule ¢ of the jobs, completion time Cgj) = Z]i=1pc(i) :
maximum late work VmaX(G) = maX{VG(l), V0(2) s eee s Vc(n)} can be
computed where:

0 if Cc(j) < dG(j)
Vo) =) Cog) - doy 1 doy< Co)< do) * Poi)
Po() if Cog) = dog) + Pog)
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where:

Tc(j) = maX{O,CG(]') - do(]')}.

The first problem of minimizing a linear function of
maximum tardiness (Tmax) and maximum late work (Vi) IS
denoted by 1// Trmax + Vimax and called it ( P1 ). Also this problem is
a special case of the general 1// F( Trmax » Vmax ) problem. The
problem ( P1) from the class of simultaneous minimization can be
formulated as follows:

Z1 = Min{ Trax(0) + Vinex(0) } N
cES
Subject to
To)= Coi) - dogi) j=12,....n >
To20 j=12,...n | e (P1)
Vi) < Coj) = Ao j=1,2,...n
Vi) < Po) j=1,2,...,n
Vi =0 i=12,...n /

Where S denotes the set of all feasible schedules.

The aim in problem ( P1) is to find a processing order of the
jobs on a single machine to minimize the sum of maximum
tardiness and the maximum late work (i.e., 1/ Tax + Vinax)-

The second problem of minimizing a linear function of total
late work (Zj“:lvj) and maximum late work ( Vmax ) is denoted by

1U1'%521 Vi + Vinax and called it ( P2). Also this problem is a special
case of the general 1/ F(¥;=; Vj, Vinax) problem. The problem ( P2)
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from the class of simultaneous minimization can be formulated as
follows:

Z2 = Min{ Y21 Vo) + Vinax(0) } 3\
GES
Subject to
0 if Cog) < dogy > -(P2)

Vo) =< Coi) - Uoggy I o)< Co)< Aoy + Pogy »j = 1,2,...,0

Pag) if Cog) = dog) * Pogi)

J

The aim in problem (P2 ) is to find a processing order of the
jobs on a single machine to minimize the sum of total late work and
the maximum late work (i.e., 1/ XY= Vj+ Via).

3.Local search algorithms

First application of local search to NP-hard problems stems
from a time as early as the late 1950's and early 1960's [10]. Local
search methods can find the approximation solution within a
reasonable running time. Local search methods have the same
feature: they explore the search space by iteratively moving from
one feasible solution to another according to some defined rules.
Many of these methods are inspired from nature and they explore
neighborhood of feasible solution. Local search methods differ
from each other in the problem representation they adopt, their
definition of neighborhood on this representation and the strategy
they employ while searching through this neighborhood. Some
local search methods are inspired from evolution. This suggests the
need for the following definition:
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3.1 Solution Representation[11]

Solution representation depends on the problem specification. In
a scheduling problem of n jobs, a solution is represented by a
permutation of the integers 1,2,...,n.

Definition | [11]: An instance of a combinatorial optimization
problem is a pair ( S, ), where the solution set S is the set of all
feasible solutions and the cost function f is a mapping f:S —» R.
The problem is to find a globally optimal (minimal) solution, i.e.,
an s*€ S, such that f(s*) <f{(s) forall s € S.

Definition 11 [12]: A neighborhood function N* is a mapping

N*:S—> P(S) which specifies for each s € S a subset N*(s) of S
neighbors of s.

Three typical neighborhoods exist for the permutation
representation. They can be defined by applying certain moves to a
sequence of jobs [13]:

(1) Insert(shift): This neighborhood is obtained by removing a
job from one position in the sequence (1,2,3,4,5,6,7,8) and
insert it at another position either before (left insert) or after
(right insert) the original position. For example the schedules
(1,5,2,3,4,6,7,8) and (1,2,3,4,6,7,5,8) are both
neighborhoods.

(2) Swap(interchange): Swap two jobs that may not be adjacent.
For example the schedule (1,6,3,4,5,2,7,8) is a neighbor.

(3) Block insert: Insert a subsequence of jobs in a new position.
For example the schedule (1,4,5,2,3,6,7,8) is a neighbor.

Definition 111 [8]: Let ( S, f) be an instance of a combinatorial
optimization problem and let N* be a neighborhood function. A
solution s*€ S is called a local optimal (minimal) solution with
respect to N* if f(s*) < f(s) for all s € N*(s*). The neighborhood
function N* is called exact if every local minimum with respect to
N* is also a global minimum.
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Local search methods share the following features:

(1) Initialization: An initial feasible solution s is generated
randomly or by applying a heuristic method and declared as
the current solution. The objective function value of the
current solution is computed.

(2) Neighborhood generation: A "move" is made through the
solution space S from neighbor to neighbor to select a
neighbor s' of s.

(3) Acceptance test: Each local search method has its own
acceptance test to decide whether s' replace s as the current
solution.

(4) Termination criteria: The algorithm is repeated until some
termination criteria are satisfied. The output will be the best
solution generated.

3.2 Descent Method (DM)

The descent method (DM) is a simple form of neighborhood
search methods in which only improving moves are allowed.
The resulting solution is a local optimum, not necessarily a
global optimum. The structure of a descent algorithm is
presented in figure (3.1).

Step (1): Select an initial solution s € S;
Step (2):Choose an element s'eN*(s);A=f(s")-f(s);ifA<0

then s=s¢g,

Step (3): If f(s") > f(s), V s' € N*(s), then stop; else return to step (2).

Figure (3.1) structure of a descent algorithm
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3.3 Simulated Annealing (SA) Algorithm

Simulated annealing (SA) has its origin in statistical physics,
where the process of cooling solids slowly until they reach a low
energy state is called annealing. It was originally proposed by
Metropolis et al. [13] and was first applied to combinatorial
optimization problems by Kirkpatrick et al. [14]. In such algorithm,
the sequence of the objective function values does not necessarily
monotonically decrease. Starting with an initial sequence s, a
neighbor s' is generated (usually randomly) in a certain
neighborhood. Then the difference A = f(s') - f(s), in the values of
the objective function f is calculated. When A < 0, sequence s' is
accepted as the new starting solution for the next iteration. In the
case of A > 0, sequence s' is accepted as new starting solution with
probability exp(-A / T), where T is a parameter known as the
temperature. Typically, in the initial stages, the temperature is
rather high so that escaping from a local optimum in the first
iterations is rather easy. After having generated a certain number of
sequences, the temperature usually decreases. Often, this is done by
a geometric cooling scheme which we will also apply.

In this case the new temperature T™" is chosen such that
T =2 T% where : 0 <1< 1 and T denote the old temperature.
A possible stopping criterion would then be a cycle of a final
temperature, which is sufficiently close to zero. Since we need to be
unbiased we use for all heuristics a fixed given number (20,000 in
this paper) of generated solutions as stopping criterion, we
determine on the base of the initial temperature T = 10 as in [15].

3.4 Genetic Algorithm (GA)

GA based on simplification of natural evolutionary process,
genetic algorithms operate on a population of solutions rather than
a single solution and employ heuristics such as selection, crossover
and mutation to evolve better solutions. Each individual solution is
represented by a string includes a set of random numbers called
chromosomes. GA applies genetic operations on the individual
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chromosomes which are reproduced by exchanging genes utilizing
crossover. An offspring inherit some characteristics from each of its
parents.

The general steps of GA are as follows:

(1) Generate random numbers for initial population (individual
chromosomes) (solutions).

(2) Select two parents from a current population according to
their fitness.

(3) Apply crossover to them to produce new offspring.

(4) Enter the new offspring to the population utilizing
replacement strategy.

(5) Apply mutation to the random selected chromosomes.

(6) Enter the mutated chromosomes to the population using
replacement strategy.

(7) Terminate the algorithm after a fixed number of
generations.

Note that in scheduling problem, a chromosome includes genes
that are a number of jobs that should be applied on one machine
with permutation. In the following paragraph we describe each of
the GA mechanisms.

(1) Initial population

Initially many individual solutions (chromosomes) are
generated randomly or produced with a good heuristic to form an
initial population.

(2) Parent selection

The selection strategy is a procedure to choose the
individuals in the current population for creating offspring of
subsequent generation. Two parent solutions (chromosomes) are
selected from a current population according to their values, the
better fitness, the bigger chance to be selected.
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(3) The crossover operator

The crossover operation is the most important operator in GA.
We used two-point crossover (partially matched crossover) (PMX)
on each pair of parent solutions to generate two new solutions.

Two-point crossover calls for two points to be selected on the
parent organism strings. Everything between the two points is
swapped between the parent organisms, rendering two child
organisms. For example with crossover two point after the 4™ and
7" element:

Parents Exchanged Children

Parentl 12345678 1234|364 |8 1257|364| 8 Child1

> >

Parent2 8521(364[7 8521|567 |7 83215674 Child2

In other words, we made the swaps, 3 «— 5, 6«6, 4«—7 and
then other elements remainder the same.

(4) The mutation operator

We randomly choose a chromosome and two of its genes ( jobs)
as a candidate to be mutated.

(5) Replacement strategy

The elitist strategy is applied in this problem. In each generation
we select the best chromosome as one of the chromosomes in the
next population, in addition to the chromosomes (parents and
offsprings) which are ranked after crossover and mutation
according to their fitness values.
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(6) Stopping condition

GA is terminated if the best chromosome of the population
doesn't change for 50 consecutive generations.

4. Computational experiments

This section views the computational results of local search
algorithms (i.e., descent method (DM), simulated annealing (SA)
and genetic algorithm (GA)) which introduced in section (3) for the
problems (1//Tmax+ Vimax ) and (/7251 V;+Vina). Test problems are

generated as follows: for each job j, an integer processing time p; is
generated from the discrete uniform distribution [1,10]. Also, for
each job j, an integer due date d; is generated from the discrete
uniform distribution [P(1-TF-RDD/2),P(1-TF+RDD/2)], where P =

j=1 bj, depending on the relative range of due date (RDD) and on
the average tardiness factor (TF). For both parameters, the values
0.2,0.4,0.6,0.8.1.0 are considered. For each selected value of n, two
problems are generated for each of the five values of parameters
producing 10 problems for each value of n, where the number of
jobs n = 50,100,200. All local search algorithms in this paper
(descent method (DM), simulated annealing (SA) and genetic
algorithm (GA)) are tested by coding it in Matlab R2009b and
running on a personal computer hp with Ram 2.50 GB. Each
algorithm stops when it attends to a fixed number of iteration. The
(DM) and (SA) stop after 20,000 iteration and (GA) stops after 100
new generation of population.

For the problem (P1) tables (4.1) to (4.3) show the values of
each local search algorithm and how many times each of them
catches the best value. For the problem (P2) tables (4.4) to (4.6)
show the values of each local search algorithm and how many times
each of them catches the best value. Each table contains 10
problems where:

EX = the number of example.
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DM = descent method performance.

SA = simulated annealing performance.

GA = genetic algorithm performance.

Best = the best performance.

No. best = number of examples that catch the best performance.
Av. Time = the average of time in second.

Table (4.1): The performance of local search algorithms for

n=50.
EX | Best | DM Time for SA Time for | GA | Time for
DM SA GA
1 33 33 0.803423 33 0.485376 33 2.2149
2 14 14 0.485881 14 0.476210 14 2.1998
3 55 55 0.482367 59 0.478526 55 2.2146
4 24 24 0.476799 24 0.480008 24 2.2085
5 0 0 0.481222 0 0.488164 0 2.2074
6 55 55 0.468660 56 0.492309 55 2.2515
7 37 37 0.473350 38 0.482789 37 2.2172
8 64 64 0.481144 69 0.478321 64 2.2074
9 94 94 0.468486 94 0.486744 94 2.2218
10 | 133 | 133 0.476539 133 | 0.495805 | 133 | 2.2011
No. best 10 Av. Time 6 Av. Time 10 | Av. Time
0.5097871 0.4844252 2.21442

Journal of Al Rafidain University College 172 ISSN (1681 — 6870)



Approximation Solutions for

Multicriteria Scheduling...

S.Abdul-Razaq

Adawiyah A. Mahmood, Dr. Tariq

Issue No. 34/2014

Table (4.2): The performance of local search algorithms

for n = 100.
EX | Best | DM Time for SA Time for | GA | Time for
DM SA GA
1 | 281 | 281 0.752799 281 | 0.618218 | 281 5.2176
2 | 345 | 345 0.632327 345 | 0.620342 | 345 5.1908
3 | 334 | 334 0.630096 334 | 0.642404 | 334 5.1451
4 | 183 | 183 0.623157 183 | 0.756629 | 183 5.1197
5 | 496 | 496 0.628466 | 496 | 0.702720 | 496 5.1533
6 133 | 133 0.626593 133 | 0.636938 | 133 5.1359
7 22 22 0.628908 22 0.633847 22 5.2142
8 | 120 | 120 0.624681 120 | 0.643624 | 120 5.1146
9 | 345 | 345 0.631848 345 | 0.636874 | 345 5.1641
10 | 95 95 0.629514 95 0.640907 95 5.1668
No. best 10 Av. Time 10 Av. Time 10 | Av. Time
0.6408389 0.6532503 5.16221
Table (4.3): The performance of local search algorithms for n =
200.
EX | Best | DM | Time for SA Time for GA | Time for
DM SA GA
1 319 | 319 | 0.920927 | 319 1.089923 | 319 16.4951
2 138 | 138 | 0.963153 | 138 | 0.969849 138 16.2566
3 830 | 830 | 0.934056 | 830 | 0.937151 | 830 15.5157
4 30 31 0.936466 31 0.944838 30 15.4509
5 0 0 0.936650 0 0.962992 0 15.3982
6 357 | 357 | 0.950734 | 357 0.987751 | 357 15.5027
7 352 | 352 | 0.936504 | 352 0.949816 | 352 15.5463
8 146 | 146 | 0.940228 | 146 | 0.925345 146 15.3809
9 57 57 0.929991 57 0.928336 57 14.7551
10 | 233 | 233 | 0.929631 | 233 | 0.941485 233 15.4948
No. best 9 Av. Time 9 Av. Time 10 | Av.Time
0.937834 0.9637486 15.57963
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Results of the above tables show that the (GA) performs
very well and then the (DM) gives reasonable results. The average
computation time of (SA) is close to that of (DM) while for (GA) is

large.
Table (4.4): The performance of local search algorithms for n =
50.
EX | Best | DM Time for SA Time for | GA | Time for
DM SA GA
1 38 56 0.621646 62 0.462542 38 1.9022
2 14 18 0.465414 17 0.466724 14 1.8758
3 61 80 0.448073 71 0.468660 61 1.8781
4 24 35 0.462600 33 0.453508 24 1.9018
5 0 0 0.455166 0 0.454749 0 1.8815
6 62 74 0.451512 64 0.447186 62 1.9003
7 41 41 0.490248 50 0.455103 44 1.8713
8 65 72 0.447783 66 0.462686 65 1.8766
9 94 | 104 0.450303 98 0.456187 94 1.8606
10 | 133 | 136 0.446130 138 | 0.468994 | 133 1.8821
No. best 2 Av. Time 1 Av. Time 10 | Av. Time
0.4738875 0.4596339 1.88303
Journal of Al Rafidain University College 174 ISSN (1681 — 6870)




Approximation Solutions for Adawiyah A. Mahmood, Dr. Tariq Issue No. 34/2014
Multicriteria Scheduling... S.Abdul-Razaq

Table (4.5): The performance of local search algorithms for n =

100.
EX | Best | DM Time for SA Time for | GA | Time for
DM SA GA
1 | 281 | 309 0.579330 289 | 0.697297 | 281 | 4.7017
2 | 348 | 378 0.591284 | 358 | 0.608357 | 348 | 4.8789
3 | 337 | 355 0.588728 | 347 | 0.597732 | 337 | 4.6866
4 | 191 | 201 0.599128 197 | 0.601212 | 191 | 4.9383
5 | 496 | 497 0.589819 | 496 | 0.600085 | 497 | 4.6737
6 | 158 | 203 0.596384 180 | 0.602028 | 158 | 4.6113
7 27 32 0.598575 42 0.605930 27 4.6847
8 | 135 | 150 0.595046 160 | 0.599502 | 135 | 4.9194
9 | 345 | 348 0.603438 | 360 | 0.592063 | 345 | 4.6762
10 | 111 | 163 0.597757 140 | 0.620136 | 111 | 4.6745
No. best 0 Av. Time 1 Av. Time 9 Av. Time
0.5939489 0.6124342 4.74453

Table (4.6): The performance of local search algorithms for n =

200.
EX | Best | DM Time for SA Time for GA | Time for
DM SA GA

1 369 | 438 1.087852 | 424 | 0.897394 | 369 15.3706
2 301 | 311 0.887854 | 343 | 0.888566 | 301 14.1156
3 834 | 910 0.925646 876 | 0.892262 | 834 | 14.0318
4 30 56 0.883290 66 0.890235 30 15.7047
5 0 0 0.899873 7 0.857499 0 14.5430
6 404 | 470 0.890592 | 453 | 0.888713 | 404 | 13.7467
7 397 | 459 0.896993 | 453 | 0.895019 | 397 14.7598
8 304 | 342 0.893320 355 | 0.913652 | 304 | 14.7038
9 91 | 127 0.889341 136 | 0.896170 91 14.9116
10 | 302 | 370 0.882687 371 | 0.900059 | 302 14.7030
No. best 1 Av. Time 0 Av. Time 10 | Av. Time
0.9137448 0.8919569 14.65906
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5.Conclusions

In this paper local search algorithms (descent method (DM),
simulated annealing (SA) and genetic algorithm (GA)) are
proposed to find approximation solutions for the problems of
MIiNiMizing Trax + Viax and X2, Vj + Vi A computational
experiment for the local search algorithms on a large set of test
problems are given. The main result is that the genetic algorithm
(GA) is more effective for our problems.

An interesting future research topic would involve
experimentation with the approximation algorithms for large n and
experimentation with the following multicriteria problems :

(1) L/Lex(Tmax » Vinax):
(2) VIF(Timax s Vinax)-
(3) 1//L9X(Z]-n=1 Vj ) Vmax)-
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